On counting point-hyperplane incidences
نویسندگان
چکیده
In this paper we discuss three closely related problems on the incidence structure between n points and m hyperplanes in d-dimensional space: the maximal number of incidences if there are no big bipartite subconfigurations, a compressed representation for the incidence structure, and a lower bound for any algorithm that determines the number of incidences (counting version of Hopcroft’s problem). For this we give a construction of a special point-hyperplane configuration, giving a lower bound, which almost meets the best upper bound known thus far. 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences
Let d and k be integers with 1 ≤ k ≤ d − 1. Let Λ be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces needed to cover all points in Λ ∩ K. In particular, our results imply that the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional n ×...
متن کاملCounting External Facets of Simple Hyperplane Arrangements
The number of external facets of a simple arrangement depends on its combinatorial type. A computation framework for counting the number of external facets is introduced and improved by exploiting the combinatorial structure of the set of sign vectors of the cells of the arrangement. 1 Background and introduction n hyperplanes in dimension d form a hyperplane arrangement. An hyperplane arrangem...
متن کاملIncidences Between Points and Lines on Two- and Three-Dimensional Varieties
Let P be a set of m points and L a set of n lines in R, such that the points of P lieon an algebraic three-dimensional surface of degree D that does not contain hyperplaneor quadric components, and no 2-flat contains more than s lines of L. We show thatthe number of incidences between P and L is
متن کاملInside-Out Polytopes
We present a common generalization of counting lattice points in rational polytopes and the enumeration of proper graph colorings, nowhere-zero flows on graphs, magic squares and graphs, antimagic squares and graphs, compositions of an integer whose parts are partially distinct, and generalized latin squares. Our method is to generalize Ehrhart’s theory of lattice-point counting to a convex pol...
متن کاملروشی جدید برای عضویتدهی به دادهها و شناسایی نوفه و دادههای پرت با استفاده از ماشین بردار پشتیبان فازی
Support Vector Machine (SVM) is one of the important classification techniques, has been recently attracted by many of the researchers. However, there are some limitations for this approach. Determining the hyperplane that distinguishes classes with the maximum margin and calculating the position of each point (train data) in SVM linear classifier can be interpreted as computing a data membersh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Geom.
دوره 25 شماره
صفحات -
تاریخ انتشار 2003